If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+96x-52=0
a = -16; b = 96; c = -52;
Δ = b2-4ac
Δ = 962-4·(-16)·(-52)
Δ = 5888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5888}=\sqrt{256*23}=\sqrt{256}*\sqrt{23}=16\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{23}}{2*-16}=\frac{-96-16\sqrt{23}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{23}}{2*-16}=\frac{-96+16\sqrt{23}}{-32} $
| (W/2)+(3w/4)+(1/3)=w+(7/6) | | 4+2j=3+3j | | 6x-4x=+15+3 | | 7n×8-6n=0.8 | | 3(3x-9)-3=3(x-4)+30 | | 1.36x0.8=1.088 | | 4^x^2=2x | | 4x+3=2(2x+3 | | 3x1=37 | | 5n^2-26n-24=0 | | -7(-2x=7)=105 | | 8f+14=12f | | 90-x=47 | | 8x+15=2x+3 | | 6m+2=2(4m+1) | | 6(x+1)=7(2x=10) | | 11b-4b=7 | | 15-4=x | | y^2-3y+2=72 | | 9x+14=5x+27 | | x=18x+4 | | (2p+1)+(3-4)+(3-1p)=3p+1 | | 5(2x+1)=18x | | x+x=x4 | | 25+x=-3x+3(1+6x) | | t-7=3+2t | | 3x-5=21x-1 | | 13+x=143 | | u/7.5=10/7.5 | | 9j-6j=6 | | -8(x+2)-5x=2X+14 | | x+x=10+10 |